Is Covid19 a TRMP7 derangement syndrome?

In Mar 2020 I got interested into Magnesium as a means to modulate covid19 hypercytokinemia. I encouraged relevant people to roll-out a world-wide magnesium resiliencing program, obviously with zero result. Now, I reviewed the TRMP7 literature since 2019...

Inhibitors of TRPM7

	1		
Ginsenoside			31947967,
Rd; Ginseng			33143990
Astrogaloside	Astragalus		
IV	membranace		
	us: Fish		
NS8593			32146159
FTY720			31545149
Sacubitril			34778271
TG100-115			33658993
Var. NSAR	Naproxen,	Cytosolic	34733174
	Ibuprofen,	acidification	
	Salicylate,		
	ASS		
Progesterone			31293101
2-apb	2 amino ethyl		31947967
	diphenyl		
	borate		
Camp:pka			30615643
CCT128930			33989904
CFTR	Cystic fibrosis		31176886
Mutation			
Pantoprazol			34714373
Gadolinium	Gd(3+)		32468675
Magnesium			Common

		sense
Lidocain		33435261
Carvacrol	Origanum vulgare	32337263 <i>,</i> 31848974
Oridonin		34285910
Waixenicin A		31219801 <i>,</i> 32994545
Rikkunshito	Japan herb	30889598
Mir-22-3p		32924998
Mir-129-5p		33951695
Mir-135a		31739105
Mir-149		33284571
Mir-204-5p		32484206
Mir-192-5p		34042256
Mir-543		30710498

Activators of TRPM7

Cobalt			30523498
HULC	Spongt mir- 204-5p		32484206
Naltriben			32146159
Leptin			31545149, 33891828

Stretch, shear stress				31921825, 34244134
Elastokine	RPSA rec			32733880
Isoproterenol				32390858
Нурохіа				32215176
Acidosis				31293101
Cadmium				32080757
Clozapin				34752845
Bupivacain				34060177
H2O2				33999118
LPS Endotoxin		TLR4 NOX2 R.O.S. NF kappaB	Tnfa, il1b, il6, il12	31444399, 31288723
Phosphat				32800835

Major pathophysiological concepts with TRPM7 involvement

Sepsis		32484206
Acute renal failure		31060485
Endothelium and Inflammation		
Inflamma- some		33951695
(Endothelium and Coagulation)		NOTHING

	T	
Fibrosis		33456540,
EMT		30819230,
TGFbeta		32047249,
Cancer		33143990,
Migration		33647257
Invasion		
Osteogenese,		32596398,
Amelogenese		33924361
Tumormatrix	ChondrSO4 PG	30453391
Hypertension		31219801
		33494094
Endothelial		31559137
barrier		
Epithelial		
barrier		
Blood brain		33114331
barrier		
Neurotox		33029295
Neuroresil		
NETosis		NOTHING
MDSC		NOTHING
PMN	Mig, R.O.S.	33658993
Macrophage	M1	33153718
Zellvolumen		34017036

Major downstream pathways

Cobalt influx	hif1a		30508321
P38, JNK			33494094
Cytoskeleton	rhoA		31844251

Zinc influx	tox	33114331
Calcium influx	RhoA, cdc42, iqgap1, calmodulin, myosin-ii	34244134
O-GlcNAc		32684624
Caveolin		32684624
c-myc		32684624
Akt; mTor		33658993, 30819230
Hedgehog		33927631
notch1		33381038
stat3		33381038
Cd133, ldh1	stemness	33381038

Active complex structure

TRMP7			
Other TRMP			
EGFR, c-src			32706027
CNNM1,2,3,4	Metal transp		34766907
ARL15	g-protein		34766907
mdmx	zinc		34627839

The tables show raw data from all relevant abstracts on TRPM7, so, where is the overlap, where is absolute lack of knowledge, which substances are available for retargeting approaches.

Center stage is the sepsis-vasculitis aspect of covid19 disease at microvascular location with a multitude of organs under possible attack. TRPM7 is expressed ubiquitously.

On the long-term, TRPM7 activity makes "bones from viable tissues", organ fibrosis and vascular sclerosis and persistent microinflammation. On the short term, TRPM7 shifts Calcium into any cell which leads to the activation of a couple of signal transduction pathways ultimately "activating" it.

There is lack of published data on the central nexus around endothelial dysfunction – inflammothrombosis which causes the extrapulmonary major complications of covid19 disease.

We have to assume that a system which disturbs the endothelium in a sepsis like mode with TRPM7 at nexus point should produce that set of weibel-pallade bodies, adamts13, thrombomodulin, complement in situ, ros, local platelet and neutrophil adhesion which makes the ultimate thromboses and embolisms.

Same tissue activation should run into the diseased respiratory epithelia and deep airways.

There is currrently not one paper which looks into TRPM7 involvement in covid pathology material so follow-the-science depends on rational imputation. I emailed some authors which are active in TRPM7 to apply their established methods to human or animal specimens.

Acute as well as the long Covid should be treated at TRPM7, in the acute setting as add-on, in the chronic setting in basic antifibrotic intention.

Magnesium supplementation is the absolute bottom method to inhibit TRPM7 and it shows additional effects, and, Mg2+ cannot be understood w/o TRPM7.

I got really excited as I read about **Sacubitril** since it is in clinical use in the indication of HfrEF, so roll-out would not be a problem.

Is THIS a paper – quite not. It will grow as I read the papers and so on. Numbers given are PubMed Identifiers, access item by

http://www.kidney.de/pget.php?pmid=34519155_and so on.

A trial of Sacubitril/Valsartan is running at Duke https://www.clinicaltrials.gov/ct2/show/NCT04883528

Author (me) Ossip Groth, Lepser Strasse 54, 39261 Zerbst (Germany)

My major resources are

<u>www.coviki.org</u> – Covid19 literature database <u>www.moremed.org</u> – literature search house PubMed, PMC and many others.

www.bdom.kidney.de – up to 2011 vintage medical review collection https://archive.org/details/@ossip_groth - something

On the question of Magnesium supplementation – working hypothesis give Amiloride

New study shows, more hypermagnesiemia – more severe covid disease. This frustrated me to conclude that the problem is magnesium redistribution from intracellular to extracellular, so, lower intracellular magnesium would lead to trmp7 overactivity.

Clinically, ACEIs/AT1RAs come with plus: Hydrochlorothiazide which extrudes Magnesium from the intracellular space while Amilorid(e) "potassium saving diuretics concept" inhibits cellullr magnesium egress, so, merely than overeating magnesium, at least covid patients should add Amiloride. I have not read the papers yet, and the biblio will follow. Only to state my claim on nov 29th 2021.